Regular Abstraction
An Alternative to Predicate Abstraction

Matthias Heizmann

University of Freiburg

October 2008
Task: Safety Check/Reachability analysis

Well known methods:
Task: Safety Check/Reachability analysis

Well known methods:

- Model Checking
 e.g. transition system, search error state
 Problem: state explosion, infinite

Idea of predicate abstraction: Combine both approaches.
Task: Safety Check/Reachability analysis

Well known methods:

- Model Checking
 e.g. transition system, search error state
 Problem: state explosion, infinite

- Theorem Proving
 e.g. hoare calculus,
 undecideable if we use expressive logic
 so not automatic

Idea of predicate abstraction: Combine both approaches.
Task: Safety Check/Reachability analysis

Well known methods:

- Model Checking
 e.g. transition system, search error state
 Problem: state explosion, infinite

- Theorem Proving
 e.g. hoare calculus,
 undecideable if we use expressive logic
 so not automatic

Idea of predicate abstraction: Combine both approaches.
0: if (x<5) {
1: x++
2: assert x<6
3: }
4: some other code
\[\neg x \geq 5 \]
\[\neg x \geq 6 \]
\[x \geq 5 \]
\[x \geq 6 \]
\[\neg x \geq 5 \]
\[\neg x \geq 6 \]
\[x \geq 5 \]
\[\neg x \geq 6 \]

\[x \geq 5 \]
\[x \geq 6 \]

\[\pre(x \geq 5 \land x < 6, x++) \land x < 5 \land x < 6 \]
\[= x \geq 4 \land x < 5 \land x < 5 \land x < 6 \]
satisfiable!
Input: A program \mathcal{P}

build abstraction:
build automaton A_i that represents $(\mathcal{P}, p_1, \ldots, p_n)$

verify abstraction:
is A_i safe?

spuriousness check:
is π feasible?
$pre(true, \pi)$ satisfiable?

choose refinement:
choose new predicates p_{i1}, \ldots, p_{im}

π spurious

\mathcal{P} is not safe
+ counterexample π

\mathcal{P} is safe

π is feasible
not safe + counterexample π

π is feasible

Matthias Heizmann | Regular Abstraction
Predicate Abstraction is Inefficient

Check if counterexample is spurious.

\[
pre(true, x<5; \ x++; \ x\geq 6) = x < 5 \land x \geq 5
\]

unsatisfiable
Predicate Abstraction is Inefficient

Check if counterexample is spurious.

\[\text{pre}(true, x < 5; x++; x \geq 6) = x < 5 \land x \geq 5 \]

unsatisfiable

Build the abstraction.

\[x < 6, x < 5 \quad \xrightarrow{x++; \quad x++} \quad x \geq 6, x \geq 5 \]
Predicate Abstraction is Inefficient

Check if counterexample is spurious.

$$\text{pre}(true, x<5; x++; x\geq 6) = x < 5 \land x \geq 5$$

unsatisfiable

Build the abstraction.

$$\begin{align*}
x < 6, x < 5 \\
x \geq 6, x \geq 5
\end{align*}$$

$$\text{pre}(x \geq 6 \land x \geq 5, x++) \land x < 5 \land x < 6$$

$$= x \geq 5 \land x \geq 4 \land x < 5 \land x < 6$$

unsatisfiable
Flaws of Predicate Abstraction

- Slow, a lot of theorem proving necessary
Flaws of Predicate Abstraction

- Slow, a lot of theorem proving necessary
- when combining with cegar:
 - theorem proving to choose new predicates
 - theorem proving to build new abstraction
 - every CEGAR iteration - build a new abstraction from scratch
“A clever person solves a problem. A wise person avoids it.”
Albert Einstein (1879-1955)
Consider CFG as finite automaton.

\[\mathcal{L}(P) = \{x<5; x++; x\geq 6\} \]
Consider CFG as finite automaton.

\[\mathcal{L}(\mathcal{P}) = \{ x < 5; x++; x \geq 6 \} \]

Definition

We define a Regular Abstraction of

- a Program \(\mathcal{P} = (\text{LOC}, \delta, \text{LOC}_{\text{init}}, \text{LOC}_{\text{err}}) \)
- and a set of regular expressions \(\alpha_1, \ldots, \alpha_n \)

very declarative, by its Error Traces

\[\Pi^{\text{reg}}_{\text{err}}(\mathcal{P}, \alpha_1, \ldots, \alpha_n) := \mathcal{L}(\mathcal{P}) \setminus \bigcup_{i=1}^{n} \mathcal{L}(\alpha_i) \]
\[\Pi_{\text{err}}^{\text{reg}}(\mathcal{P}, \alpha_1, \ldots, \alpha_n) = \mathcal{L}(\mathcal{P}) \setminus \mathcal{L}(\alpha_1 \mid \ldots \mid \alpha_n) \]
\[\Pi_{\text{err}}^{\text{reg}}(\mathcal{P}, \alpha_1, ..., \alpha_n) = \mathcal{L}(\mathcal{P}) \setminus \mathcal{L}(\alpha_1 | ... | \alpha_n) \]

\[\sum^* \]

NFA accepting \(\mathcal{L}(\alpha_1 | ... | \alpha_n) \)
\[\Pi_{\text{err}}^{\text{reg}}(\mathcal{P}, \alpha_1, \ldots, \alpha_n) = \mathcal{L}(\mathcal{P}) \backslash \mathcal{L}(\alpha_1|\ldots|\alpha_n) \]

\[\sum^* \]

NFA accepting \(\mathcal{L}(\alpha_1|\ldots|\alpha_n) \)

\[\downarrow \]

\[\downarrow \text{negation} \]

DFA accepting \(\sum^* \backslash \mathcal{L}(\alpha_1|\ldots|\alpha_n) \)
\[\Pi_{\text{err}}^{\text{reg}}(\mathcal{P}, \alpha_1, \ldots, \alpha_n) = \mathcal{L}(\mathcal{P}) \setminus \mathcal{L}(\alpha_1 | \ldots | \alpha_n) \]

NFA accepting \(\mathcal{L}(\alpha_1 | \ldots | \alpha_n) \)
\[\downarrow \]
\[\downarrow \text{negation} \]
DFA accepting \(\Sigma^* \setminus \mathcal{L}(\alpha_1 | \ldots | \alpha_n) \)
\[\downarrow \]
\[\downarrow \text{product with } \mathcal{P} \]
DFA accepting \(\Pi_{\text{err}}^{\text{reg}}(\mathcal{P}, \alpha_1, \ldots, \alpha_n) \)
Task: Exclude the spurious counterexample \(x<5; \ x++; \ x>=6 \)
Task: Exclude the spurious counterexample \(x<5; \ x++; \ x>=6 \)
Task: Exclude the spurious counterexample \(x<5 \); \(x++ \); \(x>=6 \)
Example - Build Abstraction

\[x < 5 \]
\[x++ \]
\[x \geq 6 \]
\[x \geq 5 \]
\[x < 6 \]
\[\sum \{ x < 6 \} \]
\[\sum \{ x++ \} \]
\[\sum \{ x \geq 6 \} \]
\[\sum \{ x = \} \]

Accepts $\Pi_{error}(x < 5; x++; x \geq 6) = \emptyset$

Matthias Heizmann

Regular Abstraction
Accepts $\Pi_{error}(x<5; x++; x>=6) = \emptyset$
Advantages of Regular Abstraction over Predicate Abstraction

- Economical use of theorem proving
 Can build abstraction without theorem proving
Advantages of Regular Abstraction over Predicate Abstraction

- Economical use of theorem proving
 - Can build abstraction without theorem proving
- Reuse old abstraction in refinement
Advantages of Regular Abstraction over Predicate Abstraction

- Economical use of theorem proving
 Can build abstraction without theorem proving
- Reuse old abstraction in refinement
- Enables new heuristics to speed up verification
Advantages of Regular Abstraction over Predicate Abstraction

- Economical use of theorem proving
 - Can build abstraction without theorem proving
- Reuse old abstraction in refinement
- Enables new heuristics to speed up verification
- Regular Abstraction \supseteq Predicate Abstraction
Advantages of Regular Abstraction over Predicate Abstraction

- Economical use of theorem proving
 Can build abstraction without theorem proving
- Reuse old abstraction in refinement
- Enables new heuristics to speed up verification
- $\text{Regular Abstraction} \supseteq \text{Predicate Abstraction}$
- $\text{Regular Abstraction} \not= \text{Predicate Abstraction}$
Advantages of Regular Abstraction over Predicate Abstraction

- Economical use of theorem proving
 - Can build abstraction without theorem proving
- Reuse old abstraction in refinement
- Enables new heuristics to speed up verification
- Regular Abstraction \supseteq Predicate Abstraction
- Regular Abstraction \neq Predicate Abstraction
- We can combine both approaches
Predicate Abstraction for Program
\(P = (LOC, \delta_P, LOC_{init}, LOC_{error}) \) and predicates \(p_1, \ldots, p_n \) is

\[
A^{pred}_{p_1,\ldots,p_n} = (LOC \times \{0,1\}^n, \delta_{pred}, LOC_{init} \times \{0,1\}^n, LOC_{error} \times \{0,1\}^n)
\]

\[
\ell' \in \delta_P(\ell, st), \ pre\left(\bigwedge_{i=1}^{n} (b'_i \leftrightarrow p_i), st \right) \land \bigwedge_{i=1}^{n} (b_i \leftrightarrow p_i) \text{ is satisfiable}
\]

\[
(\ell', b'_1, \ldots, b'_n) \in \delta_{Pred}\left((\ell, b_1, \ldots, b_n), st\right)
\]
Predicate Abstraction for Program

\(\mathcal{P} = (\mathit{LOC}, \delta_{\mathcal{P}}, \mathit{LOC}_{\text{init}}, \mathit{LOC}_{\text{error}}) \) and predicates \(p_1, \ldots, p_n \) is

\[
\mathcal{A}^{\text{pred}}_{p_1,\ldots,p_n} = (\mathit{LOC} \times \{0,1\}^n, \delta_{\text{pred}}, \mathit{LOC}_{\text{init}} \times \{0,1\}^n, \mathit{LOC}_{\text{error}} \times \{0,1\}^n)
\]

\[
\ell' \in \delta_{\mathcal{P}}(\ell, st), \quad \text{pre}\left(\bigwedge_{i=1}^{n} (b'_i \leftrightarrow p_i), \quad st \right) \land \bigwedge_{i=1}^{n} (b_i \leftrightarrow p_i) \text{ is satisfiable}
\]

\[
(l', b'_1, \ldots, b'_n) \in \delta_{\text{Pred}}((\ell, b_1, \ldots, b_n), st)
\]

\[
\mathcal{A}^{\text{sim}}_{p_1,\ldots,p_n} = (\{0,1\}^n, \delta_{\text{sim}}, \{0,1\}^n, \{0,1\}^n)
\]

\[
\text{pre}\left(\bigwedge_{i=1}^{n} (b'_i \leftrightarrow p_i), \quad st \right) \land \bigwedge_{i=1}^{n} (b_i \leftrightarrow p_i) \text{ is satisfiable}
\]

\[
(b'_1, \ldots, b'_n) \in \delta((b_1, \ldots, b_n), st)
\]
Predicate Abstraction for Program

\[P = (\text{LOC}, \delta_P, \text{LOC}_{\text{init}}, \text{LOC}_{\text{error}}) \]

and predicates \(p_1, \ldots, p_n \) is

\[\mathcal{A}_{p_1, \ldots, p_n}^{\text{pred}} = (\text{LOC} \times \{0, 1\}^n, \delta_{\text{pred}}, \text{LOC}_{\text{init}} \times \{0, 1\}^n, \text{LOC}_{\text{error}} \times \{0, 1\}^n) \]

\[\ell' \in \delta_P(\ell, \text{st}) \land \text{pre}(\bigwedge_{i=1}^{n} (b_i' \leftrightarrow p_i), \text{st}) \land \bigwedge_{i=1}^{n} (b_i' \leftrightarrow p_i) \text{ is satisfiable} \]

\[(\ell', b_1', \ldots, b_n') \in \delta_{\text{Pred}}((\ell, b_1, \ldots, b_n), \text{st}) \]

\[\mathcal{A}_{p_1, \ldots, p_n}^{\text{sim}} = (\{0, 1\}^n, \delta_{\text{sim}}, \{0, 1\}^n, \{0, 1\}^n) \]

\[\text{pre}(\bigwedge_{i=1}^{n} (b_i' \leftrightarrow p_i), \text{st}) \land \bigwedge_{i=1}^{n} (b_i' \leftrightarrow p_i) \text{ is satisfiable} \]

\[(b_1', \ldots, b_n') \in \delta((b_1, \ldots, b_n), \text{st}) \]

\[\mathcal{A}_{p_1, \ldots, p_n}^{\text{pred}} = P \times \mathcal{A}_{p_1, \ldots, p_n}^{\text{sim}} \]
Regular Abstraction \supseteq \text{Predicate Abstraction}

\[(0, 0) \quad x < 5, x < 6 \]
\[(0, 1) \quad x < 5, x \geq 6 \]
\[(1, 0) \quad x \geq 5, x < 6 \]
\[(1, 1) \quad x \geq 5, x \geq 6 \]

\(x++ \), \(x < 5 \), \(x < 6 \)
\(x++ \)
\(x => 5 \), \(x < 6 \)

\(A_{\text{Sim}}^{x \geq 5, x \geq 6} \)

for our example
Regular Abstraction \neq Predicate Abstraction
Regular Abstraction ≠ Predicate Abstraction

\[\Pi^{reg}_{err}(x := 0; x = 0; x != 0) = \mathcal{L}(x := 0; x := x; x != 0) \]
Regular Abstraction ≠ Predicate Abstraction

\[\prod_{err}^{reg}(x := 0; x \neq 0, x := 0; x = 0) = \mathcal{L}(x := 0; x := x; + x \neq 0) \]

\[s_0 \xrightarrow{x := 0} s_1 \xrightarrow{x \neq 0} s_2 \xrightarrow{\Sigma} \]

Diagram: Two states with transitions labeled by assignment and test conditions.
Regular Abstraction ≠ Predicate Abstraction

\[
\prod_{\text{err}}^{\text{reg}}(s_0 \xrightarrow{x:=0} s_1 \xrightarrow{x\neq0} s_2) = \mathcal{L}(x:=0; x=x;^+ x\neq0)
\]

Σ \{x:=0\} \xrightarrow{x:=0} s_0 \xrightarrow{s_1} \xrightarrow{s_2} Σ \{x\neq0\}

X := x

x := 0

x := 0; x != 0

Π_{\text{err}}^{\text{reg}}(s_0 \xrightarrow{x:=0} s_1 \xrightarrow{x\neq0} s_2) = \mathcal{L}(x:=0; x=x;^+ x\neq0)
Regular Abstraction \neq\text{Predicate Abstraction}

\[
\Pi_{err}^{reg}(\text{x:=0; x\neq 0}) = L(\text{x:=0}; \text{x:=x};^+ \text{x\neq 0})
\]
build abstraction:
build automaton A_i that accepts $\Pi_{\text{reg}}(P, \alpha_1, ..., \alpha_i)$

choose refinement:
choose regular expression α_{i+1} that describes only unfeasible paths and especially π

spuriousness check:
is π feasible?
$\text{pre}(true, \pi)$ satisfiable?

verify abstraction:
$L(A_i) = \emptyset$?

π spurious

π is feasible
not safe + counterexample π

P is not safe + counterexample π

P is safe
abstraction is safe

Input: A program P

$i := 0$

$i++$
Given: A spurious counterexample π

Task: Choose regular expression α such that

1. $\pi \in \mathcal{L}(\alpha)$
2. $\mathcal{L}(\alpha)$ is set of unfeasible sequences of statements
Given: A spurious counterexample π
Task: Choose regular expression α such that

- $\pi \in \mathcal{L}(\alpha)$
- $\mathcal{L}(\alpha)$ is set of unfeasible sequences of statements

1. Iteration: Exclude $x:=0; x<0$
2. Iteration: Exclude $x++; x:=0; x<0$
3. Iteration: Exclude $x++; x++; x:=0; x<0$
Choose Refinement

Given: A spurious counterexample π
Task: Choose regular expression α such that

- $\pi \in L(\alpha)$
- $L(\alpha)$ is set of unfeasible sequences of statements

1. Iteration: Exclude $x := 0; \ x < 0$
2. Iteration: Exclude $x++; x := 0; \ x < 0$
3. Iteration: Exclude $x++; x++; x := 0; \ x < 0$
Given: A spurious counterexample π
Task: Choose regular expression α such that
- $\pi \in \mathcal{L}(\alpha)$
- $\mathcal{L}(\alpha)$ is set of unfeasible sequences of statements

1. Iteration: Exclude $x:=0; x<0$
2. Iteration: Exclude $x++; x:=0; x<0$
Choose Refinement

Given: A spurious counterexample π

Task: Choose regular expression α such that

- $\pi \in \mathcal{L}(\alpha)$
- $\mathcal{L}(\alpha)$ is set of unfeasible sequences of statements

1. Iteration: Exclude $x:=0; x<0$
2. Iteration: Exclude $x++; x:=0; x<0$
3. Iteration: Exclude $x++; x++; x:=0; x<0$
Given: A spurious counterexample π

Task: Choose regular expression α such that

- $\pi \in \mathcal{L}(\alpha)$
- $\mathcal{L}(\alpha)$ is set of unfeasible sequences of statements
- it would be nice if $\mathcal{L}(\alpha)$ contains traces that would become counterexamples if not excluded now.

1. Iteration: Exclude $x:=0; x<0$
2. Iteration: Exclude $x++; x:=0; x<0$
3. Iteration: Exclude $x++; x++; x:=0; x<0$
Mark Segelkens Approach
find minimal unfeasible coherent subsequence

counterexample $\pi = st_0 \ st_1 \ st_2 \ st_3 \ st_4 \ st_5 \ st_6 \ st_7 \ st_8 \ st_9$
counterexample $\pi = st_0 \ s t_1 \ s t_2 \ s t_3 \ s t_4 \ s t_5 \ s t_6 \ s t_7 \ s t_8 \ s t_9$

$pre(true, \ s t_2 \ s t_3 \ s t_4 \ s t_5 \ s t_6 \ s t_7)$ is unsatisfiable

$pre(true, \ s t_3 \ s t_4 \ s t_5 \ s t_6 \ s t_7)$ is satisfiable

$pre(true, \ s t_2 \ s t_3 \ s t_4 \ s t_5 \ s t_6)$ is satisfiable
counterexample $\pi = st_0 \; st_1 \; st_2 \; st_3 \; st_4 \; st_5 \; st_6 \; st_7 \; st_8 \; st_9$

$$\text{pre}(true, \; st_2 \; st_3 \; st_4 \; st_5 \; st_6 \; st_7)$$ is unsatisfiable

$$\text{pre}(true, \; st_3 \; st_4 \; st_5 \; st_6 \; st_7)$$ is satisfiable

$$\text{pre}(true, \; st_2 \; st_3 \; st_4 \; st_5 \; st_6)$$ is satisfiable

So we can exclude $\Sigma^* \; st_2 \; st_3 \; st_4 \; st_5 \; st_6 \; st_7 \; \Sigma^*$
minimal unfeasible coherent subsequence of a counterexample

\[st_2 \ st_3 \ st_4 \ st_5 \ st_6 \ st_7 \]
minimal unfeasible coherent subsequence of a counterexample

\[st_2 \ st_3 \ st_4 \ st_5 \ st_6 \ st_7 \]

\[\text{pre}(true, \ st_2 \ st_4 \ st_7) \] is unsatisfiable
\[\text{pre}(true, \ st_2 \ st_7) \] is satisfiable

and \(st_3, \ st_5, \ st_6 \) do not manipulate variables “that are responsible” for the conflict.
minimal unfeasible coherent subsequence of a counterexample

\[\text{pre}(true, \, st_2 \, st_4 \, st_7) \] is unsatisfiable
\[\text{pre}(true, \, st_2 \, st_7) \] is satisfiable

and \(st_3, \, st_5, \, st_6 \) do not manipulate variables “that are responsible” for the conflict.

Then we can exclude \(\Sigma^* st_2 \, \Gamma^*_{st_4 st_7} \, st_4 \, \Gamma^*_{st_7 st_7} \, \Sigma^* \)

Where \(\Gamma_{st} \) is the set of all statements except assignments that change variables occurring in \(st \).
How to deal with loops

If we find ϕ_{inv} such that $\phi_{inv} \Rightarrow \text{pre}(\text{true}, \text{ste})$ then we can exclude $\Sigma^* \text{ste}^* \Sigma^*$.
How to deal with loops

If we find \(\phi^{\text{inv}} \) such that

\[
\phi^{\text{inv}} \Rightarrow \text{pre}(\text{true}, \text{st})
\]

\[
\phi^{\text{inv}} \Rightarrow \text{pre}(\phi^{\text{inv}}, \text{st})
\]

\[
\text{pre}(\phi^{\text{inv}}, \text{st}) \text{ unsatisfiable}
\]

then we can exclude \(\Sigma^{\ast} \text{st}^{\ast} \Sigma^{\ast} \).

\[
st_{b} \, \, st_{l} \, \, st_{e}
\]
How to deal with loops

If we find ϕ_{inv} such that $\phi_{inv} \Rightarrow \text{pre}(\text{true}, \text{st})$, then we can exclude Σ^\ast.

$\text{st}_b \text{ st}_l \text{ st}_e$

$\text{st}_b \text{ st}_l \text{ st}_l \text{ st}_e$
How to deal with loops

If we find φ_{inv} such that $\varphi_{\text{inv}} \Rightarrow \text{pre}(\text{true}, \text{st})$

$\varphi_{\text{inv}} \Rightarrow \text{pre}(\varphi_{\text{inv}}, \text{st})$

$\text{pre}(\varphi_{\text{inv}}, \text{st}_{b})$ unsatisfiable

then we can exclude $\Sigma_{\text{st}} \Sigma_{\text{st}}$.

Matthias Heizmann

Regular Abstraction
How to deal with loops

If we find φ_{inv} such that
- $\varphi_{inv} \Rightarrow \text{pre}(true, st_e)$
- $\varphi_{inv} \Rightarrow \text{pre}(\varphi_{inv}, st_l)$
- $\text{pre}(\varphi_{inv}, st_b)$ unsatisfiable
then we can exclude

$\Sigma^* st_b st_l^* st_e \Sigma^*$
Model Checking as a Game

Consider this as a finite two-person game on a directed graph. Player 0 plays in \(P \) and Player 1 plays in \(NFA_{\alpha_1|...|\alpha_n} \). Players must move alternately along transitions. Player 0 begins, Player 1 must take an equally labelled transition as Player 0. Player 0 wins if he reaches an accepting state. Player 1 cannot move. Player 1 wins if he reaches an accepting state. Player 0 cannot move.

If Player 0 has a winning strategy there is a counterexample.

CFG of Program \(P \)

Traces we want to exclude \(\alpha_1, ..., \alpha_n \)

We searching \(\pi \) such that

\(\pi \) accepted by \(P \)

\(\pi \) not accepted by \(NFA_{\alpha_1|...|\alpha_n} \)
CFG of Program \mathcal{P}

Traces we want to exclude $\alpha_1, \ldots, \alpha_n$

We searching π such that

π accepted by \mathcal{P}

π not accepted by $NFA_{\alpha_1|\ldots|\alpha_n}$

Consider this as a finite two-person game on a directed graph.
CFG of Program \mathcal{P}

Traces we want to exclude $\alpha_1, \ldots, \alpha_n$

We searching π such that

π accepted by \mathcal{P}
π not accepted by $\text{NFA}_{\alpha_1|\ldots|\alpha_n}$

Consider this as a finite two-person game on a directed graph.

Player0 plays in \mathcal{P}
Player1 plays in $\text{NFA}_{\alpha_1|\ldots|\alpha_n}$

Players must move alternately along transitions. Player0 begins, Player1 must take an equally labelled transition as Player0.
Model Checking as a Game

CFG of Program \mathcal{P}

Traces we want to exclude $\alpha_1, \ldots, \alpha_n$

We searching π such that

π accepted by \mathcal{P}

π not accepted by $\text{NFA}_{\alpha_1|\ldots|\alpha_n}$

Consider this as a finite two-person game on a directed graph.

Player0 plays in \mathcal{P}

Player1 plays in $\text{NFA}_{\alpha_1|\ldots|\alpha_n}$

Players must move alternately along transitions. Player0 begins, Player1 must take an equally labelled transition as Player0.

Player0 wins if
- he reaches an accepting state.
- Player1 cannot move

Player1 wins if
- he reaches an accepting state.
- Player0 cannot move
- infinite games

Matthias Heizmann | Regular Abstraction
Model Checking as a Game

CFG of Program \mathcal{P}

Traces we want to exclude $\alpha_1, \ldots, \alpha_n$

We searching π such that

- π accepted by \mathcal{P}
- π not accepted by $NFA_{\alpha_1|\ldots|\alpha_n}$

Consider this as a finite two-person game on a directed graph.

Player0 plays in \mathcal{P}

Player1 plays in $NFA_{\alpha_1|\ldots|\alpha_n}$

Players must move alternately along transitions. Player0 begins, Player1 must take an equally labelled transition as Player0.

Player0 wins if

- he reaches an accepting state.
- Player1 cannot move

Player1 wins if

- he reaches an accepting state.
- Player0 cannot move
- infinite games

If Player0 has a winning strategy there is a counterexample.
Regular Abstraction

- new abstraction technique, based on paths
- economical use of theorem proving
- strictly more expressive than predicate abstraction